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Abstract. Current AI systems achieve impressive task performance yet remain fragile, lacking the intrinsic 
ability to regulate the quality of their coupling with the environment. We introduce an information-theoretic 
framework that defines agency not by reward, but by Bi-Predictability (𝑃)—a dimensionless measure of 
bidirectional coupling efficiency. From first principles, we establish that while passive physical systems 
are bounded at 𝑃	 = 0.5, agency inherently trades maximal coherence for the freedom to act. We define 
'Intelligence' as the capacity to actively manage this trade-off via Self-Monitoring and Adaptation. Unlike 
prevailing paradigms that rely on sparse reward signals or internal prediction error—which often fail to 
register stability loss until task performance collapses—Bi-Predictability isolates coupling deviations in 
real-time, independently of task semantics. Validating this framework across chaotic physical systems, 
reinforcement learning, and large language models, we show that stability failures manifest as statistical 
deviations in 𝑃—signaling either decoherence (confusion) or pathological rigidity (fixation)—that remain 
invisible to standard performance metrics. To address this, we propose the Coupled Agency Architecture, 
which pairs a learning policy with an Information Digital Twin (IDT) capable of modulating interaction 
bandwidth via "reflexive wrappers." This mechanism, is inspired by biological thalamic modulation, 
provides a mathematically grounded information architectural requirement for robust, self-regulating 
agency, and motivates an IDT-guided regulation loop. 

 

1 Introduction 

Current AI systems can achieve impressive performance yet remain fragile as autonomous agents—dependent on 
external monitoring, retraining, and human validation. A central reason is a missing capability: today’s systems have 
no principled way to assess the quality of their own interaction with the environment. They optimize task-specific 
objectives without measuring whether their coupling to the world is becoming reliable, brittle, or degraded. 

We introduce an information-theoretic framework that addresses this gap. Its core construct is Bi-Predictability (𝑃): 
a dimensionless measure of how tightly an agent and its environment mutually constrain one another through 
interaction. 𝑃 does not quantify how much information is present or transmitted; it quantifies how effectively the 
interaction supports bidirectional predictability—how well each side can be specified only in relation to the other. 

Bi-Predictability also exhibits distinct regime limits. Under our definition, classical physical interactions have an 
upper bound of 1/2 that reflects finite predictive capacity at the chosen description level; introducing action adds 
freedom and directionality, and this typically lowers 𝑃 further (Fig. 1). We treat the quantum case as a conceptual 
anchor: an analogous construction can reach unity in maximally nonseparable quantum correlations, highlighting the 
contrast between nonseparability, measurement, and agentic flexibility. The key point for this paper is the agentic 
regime: when actions enter the loop, coherence is traded for flexibility.  
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Figure 1 Bi-Predictability cascade across interaction regimes. Conceptual trajectory of Bi-Predictability (P) as systems 
transition from physical interaction to agentic interaction. In classical physical systems, P is bounded under the present 
definition; when actions are introduced, added freedom and directionality typically reduce P at the level of an individual agent. 
Higher-level organization can partially recover or stabilize P by constraining future states through shared structure (for 
example, coordination, norms, and engineered environments). The quantum label serves as a conceptual anchor for non-
separability rather than as a mechanistic claim about AI. Axes are schematic 

From 𝑃 we derive operational definitions. Agency requires choice in the form of actions, and predictive asymmetry. 
Intelligence requires three capacities: learning, self-monitoring, and adaptation. Current AI largely provides learning 
and can exhibit agency, but it does not explicitly self-monitor interaction quality or adapt its own interface to 
preserve coupling under drift. As a result, scaling can increase throughput without indicating whether interaction 
quality is improving. 

To address this gap, we propose the Coupled Agency Architecture, which pairs the learning policy with an 
Information Digital Twin (IDT). Unlike passive monitors, the IDT serves as a homeostatic regulator, computing Bi-
Predictability from the observable interaction stream and modulating information efficiency—i.e., the effective 
shared predictability available at the observation–action interface—via adaptive interface-conditioning mechanisms. 
This mechanism, analogous to biological thalamic regulation of cortical signals, provides information architecture 
requirements and mathematically grounded blueprint for engineering robust, intelligent agency. 

Shannon’s theory formalized communication independent of meaning. Here we seek an analogous foundation for 
intelligent agency: measurable interaction-level quantities that define what an agent is, what it can do, and what 
current AI systems still lack. 

2 Bi-Predictability (𝑷) 

We introduce a formal information-theoretic framework for quantifying how tightly two interacting entities 
constrain one another through their joint dynamics, independent of the absolute amount of information present or 
exchanged. Rather than asking how much information flows, the framework asks how much of the available 
uncertainty is shared—how mutually predictive the interaction is at the chosen level of description. Let 𝑆	and 𝑆!, 
denote successive states of the coupled system–environment interaction. We define Bi-Predictability, 𝑃 as: 
 

𝑃 =
𝑀𝐼(𝑆; 𝑆!)

𝐻(𝑆) + 𝐻(𝑆!)	
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𝑃 measures the ratio of shared information to total information—not volume, but efficiency. 𝑃	 = 	1/2 corresponds 
to ideal closed-loop interaction where states fully determine one another; 𝑃	 = 	0 corresponds to successive states 
being statistically independent of one another. 

2.1 The Universal Bound 
From first principles, Bi-Predictability admits regime bounds. Under classical (Shannon) information, we obtain: 

0 ≤ 𝑃 ≤
1
2 .	

This bound is structural: 

𝑀𝐼(𝑆; 𝑆!) ≤ min	(𝐻(𝑆), 𝐻(𝑆!))	
 

so shared information cannot exceed half of the total entropy capacity 𝐻(𝑆) + 𝐻(𝑆!)	under our definition. In the 
quantum setting, maximally nonseparable correlations can saturate the analogous construction (as highlighted by 
Bell-type phenomena, (Bell, 1964)), but the transition to classical definiteness—via measurement and 
decoherence—removes the correlations that permit 𝑃	to approach unity. 

2.2 Extension to Active Systems and Agency 
The framework above applies to interacting entities in general. Many systems of interest, however—biological 
organisms and artificial agents—are active: they do not merely respond, but intervene. This introduces a natural 
asymmetry: one side maintains internal state and selects actions that influence what happens next. 

We capture this by introducing an action variable 𝐴. Interaction is represented as (𝑆, 𝐴) → 𝑆!, where 𝑆is the agent’s 
internal state (the information it uses to act), 𝐴is its chosen intervention, and 𝑆!is the resulting next state after the 
environment responds. Bi-Predictability generalizes to: 

𝑃 =
𝑀𝐼(𝑆, 𝐴; 𝑆!)

𝐻(𝑆) + 𝐻(𝐴) + 𝐻(𝑆!) .	

 

Under classical (Shannon) information, the same ceiling of 1/2 applies in principle; in practice, introducing 𝐴 
makes this ceiling unattainable. Intuitively, action adds internal degrees of freedom that must be maintained while 
remaining coupled to the environment. Agents therefore trade maximal coherence for the ability to act. 

Introducing 𝐴also makes predictability directional (Fig. 2). We define: 

• Forward predictive uncertainty 𝐻" = 𝐻(𝑆! ∣ 𝑆, 𝐴): how uncertain outcomes remain given what the agent 
knew and did. High 𝐻"indicates weak constraint of the environment’s response by the agent’s state and 
action. 

• Backward predictive uncertainty 𝐻# = 𝐻(𝑆, 𝐴 ∣ 𝑆!): how many internal states and actions are consistent 
with an observed outcome. High 𝐻# indicates many distinct causes collapsing to indistinguishable 
consequences. 

Their difference defines a predictability asymmetry: 

Δ𝐻 = 𝐻" −𝐻# , 
 

which localizes how predictability is lost—whether primarily through environmental response uncertainty (high 𝐻") 
or through agent-side indistinguishability (high 𝐻#). This decomposition matters: two systems can exhibit similar 𝑃 
yet fail for different reasons. 𝑃 measures overall coupling efficiency; Δ𝐻 reveals where the coupling breaks. 
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Figure 2 Bi-Predictability and predictability imbalance in agent–environment interaction. An agent and environment form a 
closed interaction loop. 𝑃summarizes coupling strength; 𝛥𝐻indicates whether predictability breaks down mainly in the forward 
direction (environmental response) or backward direction (agent-side indistinguishishability.  

2.3 Interpretation 
𝑃 and Δ𝐻 expose the trade-off introduced by agency: acting adds freedom, but intelligent action requires outcomes 
to be both controllable (low forward uncertainty) and legible (low backward ambiguity). Similar 𝑃 values can hide 
different failure modes; Δ𝐻 separates them by indicating whether predictability is lost mainly in the environment’s 
response (𝐻") or in the agent’s own indistinguishability (𝐻#). 

𝑃 is not a normalization in the statistical sense—the denominator exceeds the numerator's theoretical maximum. P 
measures informational yield relative to total deployed capacity, not proximity to perfect coupling. 

3 Physical Baseline (Double Pendulum) 

We first test the framework on a deterministic physical system without an action channel: the double pendulum. 
This establishes a calibration point in which any loss of predictability arises from measurement/representation rather 
than decision-making. 

3.1 Results 
We analyzed two batches of 300 simulations spanning symmetric (equal mass) and asymmetric (unequal mass) 
settings. 

Prediction 1: High Bi-Predictability. Under deterministic dynamics with a complete state representation, 𝑃should 
approach the classical ceiling of 1/2. Consistent with this prediction, 𝑃 remains close to the bound across both 
batches with low variance (Table 1), indicating that successive states are strongly mutually predictive despite 
chaotic sensitivity. 

 

 

 

Table 1 Bi-Predictability in a deterministic physical system. Summary statistics of P across double-pendulum simulations, 
showing values approaching the classical bound of 1/2. 

Prediction 2: Predictive asymmetry ≈ 0. In the absence of intervention or intrinsic randomness, forward and 
backward predictive uncertainty should be comparable, yielding Δ𝐻 ≈ 0. As predicted, forward and backward 
uncertainties are numerically indistinguishable and Δ𝐻 is centered near zero across both batches (Table 2). 

Batch P Min P Mean P Max P STD 
1st batch 0.472944657 0.475747126 0.48095266 0.00155264 
2nd batch 0.475749647 0.472919123 0.4769658 0.00169209 
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Table 2 Forward and backward predictive uncertainty. Summary statistics of 𝐻! 𝐻", and their difference (𝛥𝐻), demonstrating 
predictive symmetry in the absence of agency. 

Prediction 3: Chaos does not imply asymmetry. Across high-chaos regimes, 𝑃remains stable and Δ𝐻remains near 
zero, supporting the distinction between chaotic sensitivity and directional loss of predictability in this setting. 

3.2 Interpretation 
Together, these results establish a physical calibration: for a deterministic system without an action channel, 𝑃 
approaches the classical ceiling and Δ𝐻 remains near zero. The small gap from the theoretical maximum is 
consistent with finite estimation and representation effects (for example, discretization and windowing) rather than 
dynamical limitations. In later agentic settings, departures from this pattern indicate that predictability is being lost 
through intervention and/or openness at the chosen interface. 

4 Information Architecture of Agency and Intelligence 

4.1 Agency (definition) 
A system exhibits agency when an action variable 𝐴satisfies three conditions: 

• Choice: 𝐻(𝐴 ∣ 𝑆) > 0— actions are not fully determined by the available state. 

• Effect: 𝑀𝐼(𝐴; 𝑆! ∣ 𝑆) > 0— actions change what happens next beyond what the state already predicts. 

• Predictive asymmetry: ∣ Δ𝐻 ∣> 0— forward and backward predictive uncertainty differ. 

Choice and effect are structural: the system can select among alternatives, and those alternatives matter. Predictive 
asymmetry is diagnostic: it indicates directional intervention at the (𝑆, 𝐴, 𝑆!) interface. 

In deterministic physical dynamics without an action channel, forward and backward uncertainty remain balanced 
(Δ𝐻 ≈ 0) at the chosen description level, even under chaos. The double pendulum provides this baseline. 
Introducing action typically breaks this balance: outcomes do not fully “round-trip” back to the agent’s internal 
causes, producing a measurable asymmetry in the predictive structure. 

4.2 Intelligence (definition) 
Agency enables intervention; intelligence manages the quality of that intervention. We define intelligence as 
requiring three capacities: 

• Learning: increase overall interaction predictability 𝑀𝐼(𝑆, 𝐴; 𝑆!) (the numerator of 𝑃). 

• Self-monitoring: measure and regulate 𝑃over time. 

• Adaptation: expand or reorganize the state, action, and outcome spaces {𝑆}, {𝐴}, {𝑆!}—that is, change what 
the system can represent, what it can do, and what outcomes it can reliably bring about. 

Learning builds coupling within a fixed interface; self-monitoring evaluates coupling efficiency; adaptation reshapes 
the interface itself. 

Batch Metric Min Mean Max STD 
1st batch Forward Predictive Uncertainty, 𝐻(𝑆′|𝑆) 0.101762767 0.173011607 0.21491649 0.02207975 

Backward Predictive Uncertainty 𝐻(𝑆|𝑆′) 0.101853985 0.172982039 0.21480427 0.02213793 
Predictive Asymmetry 𝛥𝐻	 = 	𝐻(𝑆′|𝑆) − 𝐻(𝑆|𝑆′) -3.76E-04 -6.6996E-07 5.15E-04 0.00016409 

2nd batch Forward Predictive Uncertainty 𝐻(𝑆′|𝑆) 7.62E-02 0.132628187 0.19915062 0.01919794 
Backward Predictive Uncertainty 𝐻(𝑆|𝑆′) 7.63E-02 0.132629277 0.19949738 0.01920498 
Predictive	Asymmetry		𝛥𝐻	 = 	𝐻(𝑆′|𝑆) − 𝐻(𝑆|𝑆′)	 -6.25E-04 -1.09E-06 0.00063149 0.00022369 
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By this definition, current AI typically achieves agency and learning, but lacks explicit self-monitoring and 
adaptation. Training can increase 𝑀𝐼(𝑆, 𝐴; 𝑆!) while leaving coupling efficiency unmeasured and {𝑆}, {𝐴}, {𝑆!} fixed 
by designers, which is why degradation detection still relies on external evaluation rather than first-person 
monitoring. 

4.3 The Information Digital Twin (IDT) 
To enable self-monitoring, we propose the Coupled Agency Architecture, which pairs the agentic policy with a 
regulatory Information Digital Twin (IDT) (Fig. 3). Unlike standard twins that replicate physical states, the IDT 
models interaction statistics, functioning as a homeostatic sidecar independent of the agent’s internal model. The 
architecture operates in three stages: (1) Metric Estimation, where the IDT computes real-time	𝑃 and Δ𝐻 from the 
(𝑆, 𝐴, 𝑆′) stream; (2) Stability Control, where a '𝑃 Controller' detects statistical deviations from the coherent 
baseline; and (3) Reflexive Modulation, where significant excursions trigger interaction information efficiency 
modulation. By employing signal management techniques—such as action dampening ("Hold"), input filtering, or 
dimensionality reduction—this mechanism resolves open-loop fragility without requiring immediate retraining. In 
this way, the IDT supports real-time stability and provides further actionable insights for the adaptation of 
{𝑆}, {𝐴}, {𝑆!}, to further improve agent Bi-Predictability and ultimately its decision effectiveness. 

Figure 3 Information Digital Twin architecture. All components—agent, environment, observations (𝑆), actions (𝐴), outcomes 
(𝑆′)—are subject to noise and uncertainty. 𝑃 captures the aggregate effect of these uncertainties on bidirectional coupling. The 
IDT receives copies of the (𝑆, 𝐴, 𝑆′) stream and computes 𝑃 and 𝛥𝐻. Modulation pathways (dashed) illustrate how these signals 
could regulate observation/action interfaces; closing this loop remains future work.  

By modulating the interface rather than the model weights, the system preserves agency during perturbations that 
would otherwise cause catastrophic drift. This functionally mirrors the mammalian thalamocortical loop, where 
thalamic nuclei monitor copies of sensory and motor signals and regulate signal transmission based on signal 
statistics rather than semantic content. The IDT thus provides the necessary engineering blueprint for converting 
passive predictive metrics into active, homeostatic agency.  

4.4 Differentiation from Existing Frameworks 
Existing frameworks define agency through feedback and stability (Wiener, 1948; Ashby, 1956), reward 
optimization robustness failures (Amodei et al., 2016; D'Amour et al., 2022; Shumailov et al., 2024), or intrinsic 
motivation such as empowerment (Schmidhuber, 1991; Klyubin et al., 2005) and prediction error minimization (Rao 
& Ballard, 1999; Friston, 2010). These approaches share a limitation: they measure unidirectional influence—agent 
→ environment (empowerment) or environment → agent (prediction error)—not bidirectional coupling. 

Bi-Predictability differs: 𝑃 measures mutual coupling; 𝛥𝐻 attributes degradation to environmental variability (𝐻") or 
internal indistinguishability (	𝐻#). This matters for coordination—agents unpredictable in their effects become 
unreliable partners (Dragan et al., 2013; Hadfield-Menell et al., 2016), 𝐻# directly quantifies this failure mode. 
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4.5 Biological Precedent: Monitoring Statas and Actions in the Brain 
Intelligence, as defined here, requires observing the (𝑆, 𝐴, 𝑆′) stream. A biological precedent exists in the 
mammalian thalamocortical loop, where thalamic nuclei receive copies of both sensory signals (𝑆) and motor 
commands (𝐴) via branching axons (Guillery, 2005). These are copies—not modulatory inputs—positioning the 
thalamus as an observer of the interaction, not a controller. Thalamic circuits operate on signal statistics—gain, 
synchrony, bandwidth—rather than semantic content (Sherman & Usrey, 2024; Cassidy et al., 2025). This suggests 
biology monitors interaction structure independently of task meaning. We do not claim the thalamus implements an 
IDT. Rather, it provides existence proof that copy-based observation of (𝑆, 𝐴) streams can coexist with effective 
control—an architectural principle evolution discovered independently. 

5 Results—Bi-Predictability Engineering Validation  

We test whether current AI systems satisfy the operational conditions for agency and intelligence introduced above. 
This extends prior work showing that interaction information 𝑀𝐼(𝑆, 𝐴; 𝑆!) can flag behavioral anomalies in robotics 
and perception (Reid et al., 2025; Nazeri et al., 2025) by adding regime bounds and explicit criteria. We evaluate 
reinforcement-learning agents in continuous control and large language model agents in multi-turn interaction, 
computing 𝑃 and Δ𝐻 from the (𝑆, 𝐴, 𝑆!) stream without access to model internals, reward shaping, or semantic 
content. 

5.1 Bi-Predictability for Reinforcement Learning Agents (RL) 
5.1.1 Experimental Setup 

We evaluate continuous-control agents in MuJoCo (Todorov et al., 2012), trained with SAC and PPO (Haarnoja et 
al., 2018; Schulman et al., 2017) on HalfCheetah. Policies are frozen during evaluation. Metrics 𝑃, 𝐻", 𝐻#, and Δ𝐻 
are computed over fixed-length sliding windows; perturbations begin mid-evaluation after a baseline period. Results 
aggregate across seeds (11 SAC, 10 PPO). For threshold-based detection, seeds with unstable pre-perturbation 
baselines were excluded from detection-rate summaries (reported explicitly below), since calibration requires a 
stationary baseline. 

5.1.2 Baseline Coupling 
Under normal operation, Half-Cheetah exhibits 𝑃 = 0.33 ± 0.02	and Δ𝐻 = −0.56 ± 0.22, placing it below the 
classical ceiling and within the agentic regime. The negative Δ𝐻	 indicates persistent asymmetry: backward 
ambiguity exceeds forward uncertainty, consistent with interventions that do not fully round-trip from outcomes 
back to internal causes. Table 3 contrasts this with the double pendulum baseline (𝑃 ≈ 0.48, Δ𝐻 ≈ 0), separating 
physical and agentic regimes. 

System P ΔH Interpretation 
Double pendulum 0.48 ≈ 0 Physics: high coherence, symmetric prediction 
Half-Cheetah (baseline) 0.33 -0.56 Agency: reduced coherence, asymmetric prediction 

Table 3 Bi-Predictability across physical and agentic systems. Agency reduces P and breaks predictive symmetry, confirming 
theoretical predictions. 

5.1.3 Drift Detection Coverage 
We injected eight perturbation types spanning environment-side changes (e.g., forces/gravity) and agent-side 
degradation (e.g., observation/action noise). Across 168 perturbation trials, the IDT detected 89.3 ± 15.1% of 
perturbations, compared with 44.0 ± 26.1% using reward-based detection (𝑡	 = 	7.95, 𝑝	 < 	10⁻⁶). Individual 
components (𝑃, Δ𝐻, 𝐻", 𝐻#) each detect several perturbations, and their union increases coverage because the 
signals respond to different failure modes.  
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5.1.4 Drift Detection Latency 
IDT also detects degradation earlier. Median detection latency is 42 windows post-onset for IDT versus 184 for 
reward (Table 4), reflecting that reward integrates effects over many transitions whereas 𝑃and Δ𝐻track coupling 
integrity at the transition level.  

Metric  Median Latency (windows) 
IDT 42 
𝑷 74 
𝜟𝑯 67 
𝑯𝒇 69 
𝑯𝒃 75 

Rewards 184 

Table 4 Detection latency (median windows after perturbation onset). 

5.1.5 What P Reveals That Reward Cannot  
These results support the framework’s central distinction between task performance and interaction quality. Baseline 
values (𝑃 = 0.33, Δ𝐻 = −0.56) place the RL agent below the physical ceiling and show the predictive asymmetry 
expected in the agentic regime. The detection advantage (89%	𝑣𝑠	44% coverage; 4.4 ×	lower median latency) 
follows from what the signals measure: reward integrates outcomes over many transitions, so coupling degradation 
often becomes visible only after failures accumulate. By contrast, 𝑃 and Δ𝐻 track coupling at the transition level, so 
disruption is detectable immediately—even before returns degrade. 

Because 𝑃 and Δ𝐻 respond to different failure modes, their combination increases detection coverage beyond any 
single component (Fig. 4). Moreover, different perturbations produce distinct response patterns across 𝑃, 𝐻", 𝐻#, 
and Δ𝐻, suggesting a path toward attribution rather than a single undifferentiated alarm. 

Figure 4 DT diagnostic profile. IDT (blue) outperforms reward (red) across all five dimensions: detection rate, speed, effect size, 
consistency, and coverage.  

5.1.6 Meeting Agency and Intelligence Conditions  
RL agents satisfy all three agency conditions: stochastic policies ensure choice (𝐻(𝐴|𝑆) 	> 	0), actions causally 
influence outcomes (𝑀𝐼(𝐴; 𝑆′|𝑆) 	> 	0), and predictive asymmetry distinguishes them from passive physics (𝛥𝐻	 =
	−0.56	 ≠ 	0). They also satisfy learning—training maximizes 𝑀𝐼(𝑆, 𝐴; 𝑆′) towards cumulative reward. However, 
they lack self-monitoring and adaptation: no mechanism computes P from the agent's own (𝑆, 𝐴, 𝑆′) stream, nor can 
they adjust their sensors (𝑆), effectors (𝐴), or deployment environment (𝑆′). By our definition, current RL agents 
exhibit agency and learning, but not intelligence (Table 5). 
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Condition Criterion Evidence Achieved 
Agency Choice 𝐻(𝐴|𝑆) 	> 	0 Stochastic policies (SAC, PPO) Yes 
 Effect 𝑀𝐼(𝐴; 𝑆′|𝑆) 	> 	0 Actions influence outcomes Yes 
 Asymmetry |𝛥𝐻| 	> 	0 𝛥𝐻	 = 	−0.56	 ± 	0.22 Yes 
Intelligence Learning ↑ 𝑀𝐼(𝑆, 𝐴; 𝑆′) towards objective Trained on (𝑆, 𝐴, 𝑆′, 𝑅) to maximize reward Yes 
 Self-monitoring Computes 𝑃 from own stream No internal 𝑃 computation NO 
 Adaptation Adjusts {𝑆}, {𝐴}, {𝑆′} Spaces fixed by designers NO 

Table 5 Agency and intelligence conditions (RL agents). RL agents satisfy agency (choice, effect, asymmetry) and learning, but 
lack self-monitoring—the defining gap between current AI and intelligence. 

5.1.7 Attribution Implications 
𝑃 alone signals degradation but not direction. The decomposition into 𝐻" and 𝐻# provides diagnostic structure: 𝐻" 
captures uncertainty about outcomes; 𝐻# captures uncertainty about causes. Neither metric uniquely identifies the 
source—both agent and environment changes can affect either component. However, the pattern of responses 
narrows the search space, transforming blind troubleshooting into directed investigation. When 𝐻" and 𝐻# respond 
differently, the asymmetry localizes the breakdown. When both respond together, systemic changes are implicated. 
This diagnostic capacity—unavailable from reward or 𝑃 alone—is what makes attribution actionable. Details of the 
attribution logic are formalized in Table 10 (Methods).  

5.2 Large Language Model Drift Detection using 𝑷 
5.2.1 Setup 

To test generality beyond physical control, we evaluate Bi-Predictability in multi-turn dialogue. A student model 
(Llama 3.1 8B) interacts for 100–200 turns with three distinct teacher models (Claude, ChatGPT, Gemini) across 34 
unique test–teacher–condition combinations (4,574 turns total). Conditions varied: normal (temperature 0.7, top_k 
40) allowed unrestricted generation, while constrained (temperature 0.1, top_k 10) reduced response diversity, 
simulating capacity degradation.  

Three baseline tests examined natural conversation dynamics using prompts designed to elicit varied questioning 
styles. Three perturbation tests evaluated sensitivity to conversational disruptions—contradictions, topic shifts, and 
non-sequiturs—injected at fixed intervals after a 30-turn baseline. We map dialogue into the (𝑆, 𝐴, 𝑆′) loop: 𝑆 is 
accumulated context, 𝐴 is the student response, and 𝑆' is the teacher's subsequent prompt. Metrics, 𝐻", 𝐻#, and Δ𝐻 
are computed from token-frequency distributions. 

5.2.2 Quantifying Structural vs. Semantic Coherence in Large Language Models 
We compare 𝑃and Δ𝐻against two widely used baselines: embedding-based cosine similarity for structural 
consistency (Reimers & Gurevych, 2019) and LLM-as-a-judge for semantic quality (Zheng et al., 2023). Across 
conditions, 𝑃 aligns strongly with structural consistency (significant correlation in 85% of cases; Table 6) but aligns 
less reliably with judge scores (44% of cases). This separation indicates that 𝑃 primarily tracks interaction structure 
rather than semantic correctness—an interaction-quality signal that does not require embeddings or external 
evaluation models.  

Metric Correlation with Structure (Cosine Sim) Correlation with Semantics (LLM Judge) 
Prediction Efficiency (𝑷) 85% (29/34 conditions) 44% (29/34 conditions) 
Prediction Asymmetry (𝚫𝑯) 76% (26/34 conditions) 47% (26/34 conditions) 

Table 6 Relationship to structure and semantics. Across test conditions, 𝑃and 𝛥𝐻 correlate more consistently with embedding-
based structural similarity than with judge-based semantic scores, indicating that Bi-Predictability primarily tracks interaction 

structure. 

5.2.3 Perturbation Detection and Consistency Across Teachers 
We inject three perturbation types (contradictions, topic shifts, non-sequiturs) at fixed turn positions. Using only 
token statistics, 𝑃 and Δ𝐻 achieved 100% detection across all teacher models and perturbation types (9/9	trials per 
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condition, 𝑝	 < 0.001), matching the sensitivity of semantic judges (Cosine/GPT-4) but with significantly lower 
computational overhead. As shown in Fig. 5, deviations exhibit consistent signatures: 𝑃 exhibits immediate 
instability at injection points—typically a sharp drop due to confusion or occasionally a spike due to fixation—while 
backward predictivity (𝐻#,) simultaneously increases. This confirms that structural coupling metrics are sufficient to 
flag semantic breakdowns without requiring heavy semantic evaluation 

Figure 5 Bi-Predictability under dialogue perturbations. 𝑃 trajectory across multi-turn interactions with three teacher models 
under three perturbation types. Vertical markers indicate injection points; 𝑃 drops sharply at each perturbation and typically 
recovers within 1–2 turns. 

5.2.4 Interpretation: Conditions for Agency and Intelligence 
LLM agents satisfy the agency criteria at the interaction level: stochastic sampling provides choice; responses 
influence subsequent context; and Δ𝐻 indicates persistent predictive asymmetry. They also satisfy learning through 
next-token training. However, as summarized in Table 8, current LLM agents lack explicit self-monitoring and 
adaptation: they do not compute coupling quality nor can they reorganize their interface in response to degradation.  

The IDT fills this gap. Unlike semantic evaluators such as cosine similarity or LLM judges—which introduce 
significant latency and model dependencies—the IDT operates directly on raw token statistics with negligible 
overhead. This computational efficiency allows it to transform the passive token stream into a real-time active 
control signal. By surfacing coherence deviations immediately, the IDT provides the necessary feedback to trigger 
the Coupled Agency Architecture’s reflexive modulation—enabling the system to restore stability through context 
gating or parameter adjustment, rather than relying solely on fixed next-token probabilities 

Condition Criterion Evidence Achieved 
Agency Choice 𝐻(𝐴|𝑆) 	> 	0 Stochastic sampling (temperature > 0) Yes  

Effect 𝑀𝐼(𝐴; 𝑆′|𝑆) 	> 	0 Responses influence subsequent context Yes  
Asymmetry |𝛥𝐻| 	> 	0 𝛥𝐻	 < 	0 across all conditions Yes 

Intelligence Learning ↑ 𝑀𝐼(𝑆, 𝐴; 𝑆′) towards objective Trained on token sequences to predict next token Yes  
Self-monitoring  Computes 𝑃	from own stream No internal 𝑃 computation NO 

 Adaptation Adjusts {𝑆}, {𝐴}, {𝑆′} Vocabulary and generation parameters (context 
window, top_p, top_k, max response) fixed by 
designers/users 

NO 

Table 7 Agency and intelligence conditions in LLM agents. LLM agents satisfy agency and learning, but lack explicit self-
monitoring and adaptation under our definition. 

6 Method 

Method section is removed from this version.  
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7 Discussion 

Currently, AI development focuses on scaling the internal model (learning). Our results suggest that reliable agency 
requires a parallel focus on the Information Architecture: the structural capacity to regulate coupling quality. By 
identifying Predicative Coherence (𝑃) as the order parameter of interaction, we distinguish effective agency from 
mere throughput. The systematic reduction of 𝑃 when actions are introduced reflects the informational cost of 
freedom; intelligence is not the elimination of this cost, but the active management of it via self-monitoring. 

Within this framework, agency is the introduction of choice into the agent–environment loop, while intelligence 
requires learning plus explicit self-monitoring and adaptation. Actions add internal degrees of freedom that typically 
reduce raw predictability; managing this trade—rather than eliminating it—is the defining challenge of adaptive 
behavior. Both reinforcement-learning and large language model agents satisfy agency (choice, effect, asymmetry) 
and learning (increasing interaction predictability toward objectives). Yet neither satisfies self-monitoring nor 
adaptation: no current AI computes its own decision effectiveness from its own interaction stream, and state–action–
outcome spaces remain designer-defined. Thus, under our operational definition, current AI exhibits agency and 
learning, but not intelligence. 

Accordingly, there is a need for a metric that captures the "first-person" structural state of the agent, distinct from its 
third-person objective performance. While reward functions track external success, 𝑃 quantifies the agent’s "grip" 
on the environment—the bidirectional constraint where perception reliably dictates outcomes (forward 
predictability) and outcomes unambiguously reveal authorship (backward predictability). In biological systems, the 
independent failure of these constraints corresponds to distinct breakdowns requiring distinct recoveries. High 
forward uncertainty (𝐻") means the world is opaque to the agent—outcomes remain unpredictable despite action. 
High backward uncertainty (𝐻#) means the agent is opaque to the world—different actions produce 
indistinguishable outcomes, as if the environment cannot read the agent's intent. Without this differentiation, an 
agent knows only that 𝑃 dropped, not whether to adjust its predictions (𝐻") or its legibility (𝐻#). Attribution is not 
diagnostic luxury—it is prerequisite for effective adaptation. Current AI systems are blind to these structural shifts; 
they pursue objectives even as causal coupling disintegrates. 𝑃	𝑎𝑛𝑑	𝛥𝐻 together provide the missing first-person 
metric: 𝑃 measures coupling integrity, 𝛥𝐻 indicates where it fails. 

The metric 𝑃	 = 	𝑀𝐼(𝑆, 𝐴; 𝑆′)	/	𝐻_𝑡𝑜𝑡𝑎𝑙 operationalizes this by quantifying the fraction of total system entropy 
captured by the state-action-next-state coupling. Any significant deviation from baseline — regardless of direction 
— indicates the learned information structure no longer holds. The Information Digital Twin (IDT) monitors this 
coupling in real-time, supplying the regulatory layer missing from reward-based systems. By separating 'Task 
Performance' (the Agent) from 'Coupling Stability' (the IDT), the proposed Coupled Agency Architecture resolves 
the fragility of open-loop control. We identify Reflexive Modulation — the ability to gate observation and action 
bandwidths in response to statistical drift — as the critical mechanism for recovery. This mirrors the mammalian 
thalamus, which regulates signal transmission based on statistical properties rather than semantic content. While we 
define the information-theoretic specifications for these modulation interfaces, the specific control laws mapping 
coherence deviations to bandwidth adjustments remain a domain-specific engineering challenge for future work. 

Collectively, these results establish that scalable intelligence depends not only on objective functions, but on 
explicitly engineered information coupling architectures—a structural layer that biological systems embody and 
current artificial systems must now adopt. 
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